python机器学习API介绍20: 密度聚类及其用法( 五 )

ax = fig.add_subplot(122)

ax.plot(epsilons core_nums marker=\"o\")

ax.set_xlabel(\"log\")

ax.set_ylabel(\"core_nums\")

plt.suptitle(\"DBSCAN\")

plt.show()

centers=[[11
[12
[22
[1020

x labels_true = create_data(centers 1000 0.5)

plot_DBSCAN_epsilon(x labels_true)

#MinPts参数的影响

def plot_DBSCAN_minSamples(*data):

x labels_true = data

min_samples = range(100)

APIs = [

core_nums = [

for num in min_samples:

推荐阅读