随着国家数据战略的深化推进 , 数据成为影响社会经济发展的要素 。 同时随着《数据安全法》、《个人信息保护法》等治理新规的加速落地 , 平衡数据利用与安全合规成为数据资源建设的重要方向 。 在数据融合应用和隐私保护的双重驱动下 , 隐私计算热潮迅速兴起 。
但目前隐私计算行业仍处于初期阶段 , 其商业化落地面临着生态壁垒、计算性能、安全性以及可用性四大挑战 , 市场环境和商业规模都还不够成熟 , 隐私计算的商业前路几何?
“结合AI发展历程 , 隐私计算的未来发展可借鉴两大经验 , ”近日 , 瑞莱智慧RealAI首席架构师徐世真在数据安全与隐私计算论坛上以《隐私计算助力构建AI新基建》为题 , 提出了应对当下隐私计算所面对挑战的思路 。
文章图片
隐私计算开辟了一种全新的数据协作模式 , 在不泄露数据原始信息的前提下 , 对数据进行分析计算 , 实现数据所有权和使用权的分离 , 避免流通过程中的数据资产损失和隐私信息泄漏 。 从明文直接传输的数据流通1.0阶段 , 隐私计算模式是数据流通3.0阶段 。
北京瑞莱智慧科技有限公司成立于2018年7月 , 是清华大学人工智能研究院发起成立的科技成果转化企业 , 致力于提供安全可控人工智能基础设施平台与解决方案 。 中国科学院院士、清华大学人工智能研究院名誉院长张钹和清华大学计算机系教授朱军共同担任公司首席科学家 , 清华大学计算机系博士田天出任CEO 。
从当下问题出发 , 在徐世真看来 , 现阶段隐私计算的商业化落地仍面临四大挑战 。
第一 , 生态壁垒 。 目前各厂商隐私计算技术互不相通 , 也无法互相连接 , 解决数据孤岛问题的过程中反而带来技术孤岛的问题 , 这意味着需要上层进行大量集成 。
第二 , 计算性能 。 密码学操作的引入、分布式通信问题 , 以及同态加密导致计算性能慢 , 难以支撑大规模数据训练 。
第三 , 安全性 。 从知识产权保护的角度 , 各家厂商不会公开底层协议 , 导致协议不透明的问题 , 难以审计 。
第四 , 可用性 。 目前的隐私计算技术服务商不具备数据生态、数据链接的能力 , 无法提供开箱即用的数据和解决方案 , 用户的应用成本和难度增加 。
基于对这些挑战的认识 , 隐私计算的未来发展有哪些可借鉴经验?
徐世真首先提到了技术路径方面 , “基于底层数据流图的编译器路线将推动技术的兼容互通;性能优化当前可通过优化底层密码库来实现 , 未来仍需借助新硬件;提升安全性需要抵御密码协议层和应用层的恶意攻击” 。
推荐阅读
- 星链|石豪:在太空,马斯克和美国当局是如何作恶的
- 视点·观察|科技巨头纷纷发力元宇宙:这是否是所有人的未来?
- 视点·观察|科技股连年上涨势头难以持续:或已透支未来涨幅
- 视点·观察|张庭夫妇公司被查 该怎样精准鉴别网络传销?
- 视点·观察|科技行业都在谈论“元宇宙”,可是它还不存在
- 陈明永|行业观察|OPPO陈明永:对的路,不怕远
- 视点·观察|2021车市拐点之年:芯片荒、交付难、投诉多
- 模拟|(图文+视频)C4D野教程:Windows11的壁纸动效是如何制作的?
- 视点·观察|今年的圣诞C位属于元宇宙
- 帮信罪|带你了解什么是“帮信罪”如何避免落入陷阱