论如何骗过计算机视觉AI网络,UCLA专家为你支几招( 三 )

图3/8

第一个实验中使用的部分图像及实验结果

“我们可以很容易地骗过这些人工智能系统,”该研究论文共同作者之一,加州大学洛杉矶分校心理学教授Lujing Lu说。“这些系统的学习机制远远没有人类思维复杂。”

论如何骗过计算机视觉AI网络,UCLA专家为你支几招

图4/8

论如何骗过计算机视觉AI网络,UCLA专家为你支几招

图5/8

第二个实验中使用的部分图像及实验结果

在第二个实验中,心理学家向VGG-19展示了一些玻璃雕塑的图片,并向第二个深度学习网络展示了AlexNet。 VGG-19在所有测试两个网络的实验中表现更好。这两个神经网络都使用ImageNet的图像数据集训练。

然而,两个网络都未能识别出图像中的玻璃雕塑。

推荐阅读