高中数学知识点精选难点五篇总结
伟人所达到并保持着的高度,并不是一飞就到的,而是他们在同伴们都睡着的时候,一步步艰辛地向上攀爬着 。幻想在漫长的生活征途中顺水行舟的人,他的终点在下游 。下面是小编给大家带来的高三数学知识点总结,欢迎大家阅读!
高中数学知识点精选难点1
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合 。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示 。元素常用小写字母a、b、c、…来表示 。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合 。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A 。
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立 。例如A={0,1,3,4},可知0∈A,6?A 。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的” 。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合 。
4、集合的分类
集合科根据他含有的元素个数的多少分为两类:
有限集:含有有限个元素的集合 。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集 。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集 。
特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0} 。
5、特定的集合的表示
为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记 。
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N 。
(2)非负整数集内排出0的集合,也称正整数集,记做N或N+ 。
(3)全体整数的集合通常简称为整数集Z 。
(4)全体有理数的集合通常简称为有理数集,记做Q 。
(5)全体实数的集合通常简称为实数集,记做R 。
高中数学知识点精选难点2
不等式分类:
不等式分为严格不等式与非严格不等式 。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式 。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题 。
高中数学知识点精选难点3
一次函数的定义
一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值 。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律 。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示 。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系 。
一次函数的性质
一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
注:一次函数一般形式y=kx+b(k不为0)
a)k不为0
b)x的指数是1
c)b取任意实数
一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到 。(当b>0时,向上平移;b<0时,向下平移)
高中数学知识点精选难点4
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件 。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件 。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为 。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论 。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数 。
高中数学知识点精选难点5
一、柱、锥、台、球的结构特征
结构特征
图例
棱柱
(1)两底面相互平行,其余各面都是平行四边形;
(2)侧棱平行且相等.
圆柱
(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;
(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.
棱锥
(1)底面是多边形,各侧面均是三角形;
(2)各侧面有一个公共顶点.
圆锥
(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.
棱台
(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.
圆台
(1)两底面相互平行;
(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分.
球
(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.
二、简单组合体的结构特征
三、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度 。
四、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半 。
五、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和 。
(2)特殊几何体表面积公式(c为底面周长,h为高,h'为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:
高中数学知识点精选难点五篇总结
推荐阅读
- 步步高家教机高中用有效果吗 有必要买吗
- 想让孩子提前接触数学,怎么教幼儿10以内的加减法?
- 初中体育特长生怎么考普通高中?
- 读书郎如何切换高中教材 有什么方法
- 初中体育特长生怎么考高中
- 初中体育生怎样才能保送高中
- 读书郎平板怎么没有高中课程 原因有哪些
- 成绩差有必要读高中吗 要不要上高中
- 职业高中毕业后可以考大学吗
- 高中综合素质作文万能模板精选