MMartech 营销自动化从 AB 测试开始

在数据驱动决策的理念、思维、工具日益革新左右手的增长逻辑的今天,如何决策,即大数据应该走向决策数据显得尤为重要。本文作者在文中详细介绍“AB测试”这一科学经营行为,阐述为何将它称作成功企业留住客户、进行商业变现的奠基石。同时为大家解释AB 测试相关术语,举例数据及其相关过程。值得童鞋们交流分享。

MMartech 营销自动化从 AB 测试开始
文章插图
如今的企业营销决策变革主要在两个维度发生改变:
左手是市场导向型战略,即公司业务的市场增长逻辑、增长区间在什么地方,偏宏观战略;
右手是消费者行为研究,即如何深入理解消费者偏好、促进精准营销转化,偏微观策略。
今天,数据驱动决策的理念、思维、工具都在革新左右手的增长逻辑。重要的是如何决策,即大数据应该走向决策数据。
过去企业经常谈以消费者为中心,很容易陷入空洞的口号,主要过于依赖员工的理解和执行,造成落地难度很大。如今,大量数字化触点的建设,使多维度数据的可获得性大大提高,带来了全新的连接关系。无论是 Martech 的前链路还是后链路营销,这种连接直接促成了互动行为的数字化,一个最终的消费决策被分割成无数微观的阶段性消费者行为切面。而 AB 测试,就是对消费者行为切片进行量化反馈的过程,扮演着大数据向决策数据转变的催化剂作用,也是数据决策的重要抓手。
早在 2007 年,谷歌就建设了完善的 AB 测试系统,随后实验的频率越来越高。

  • 现在谷歌每个月都会上线几百个 AB 测试,谷歌通过这些实验可获得全年 20%+ 的增长,增加超过 10 亿美元的营收;
  • Facebook 的 CEO 会亲自参与众多的 AB 测试;
  • Linkedin 把 AB 测试作为产品研发上线过程中的基本流程;
  • 国内大厂中,小米是 AB 测试的先驱者,从 2010 年 8 月 16 日首个 MIUI 内测版发布,就开始进行系统性的 AB 测试,测出天使米粉对哪些功能更感兴趣并进行快速迭代,每个员工、米粉都积极参与到 AB 测试,并形成了小米“参与感”的文化底蕴;
  • 字节跳动自 2012 年成立以来,字节跳动先后将 AB 测试应用在产品命名、交互设计、推荐算法、用户增长、广告优化和市场活动等方方面面的决策中。
AB 测试背后,折射出的是企业“让数据和事实说话”、“避免拍脑门”的决策机制。AB 测试堪称是成功企业留住客户、进行商业变现的奠基石。
在消费品行业,AB 测试同样大有所为。比如元气森林正是通过 AB 测试,在气泡水这一细分赛道里突围而出。首先进行口味测试,测出天使用户对哪一种口味更感兴趣;再进行电商测试,看看验证型的产品在电商渠道的情况,是否达到规模化标准,再去进行线下铺开;在门店测试中,通过各种 IOT 设备监测消费者的互动和购买行为,调整选品和陈列策略,最终完成整个 DTC 测试。这套测试方法,本质上就是推动从大数据到决策数据转变的过程。
很多人一直把 AB 测试理解成一个技术行为,其实它是一种业务经营行为,而且是一种科学的经营行为。我们不应当仅仅拿它作为一个工具,而应当将它变成一种思维,一种方法论,一种企业经营策略。
AB 测试有很大的作用,但能用好 AB 测试的公司并不多,本文立意是 Martech 领域中如何用 AB 测试理解微观层面的消费者偏好并进行精准营销自动化,以及阐释 AB 测试的底层逻辑。
一、什么是 AB 测试简单来说,当企业面临决策的不确定时,可以从整体流量中划出小部分流量,随机、均匀地分出两组,分别由两组用户进行测试,最终通过实验数据对比确定更优方案。实证科学本质就是一种 AB 测试,将实验对象分组、比较、校准,形成可复制的经验。用胡适的话,“大胆假设、小心求证”,而今由于行为数据的丰富,AB 测试成为 Martech 的底牌之一。

推荐阅读